Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
152 views
in Indefinite Integral by (45 points)
recategorized by

\(\int { \sqrt{(9-x^2)^3} \over x^4}\)

Please log in or register to answer this question.

1 Answer

0 votes
by (48.9k points)

\(\int \frac{\sqrt{(9 - x^2)^3}}{x^4}dx = \int \frac{(9 - x^2)\sqrt{9 - x^2}}{x^4}dx\)

\(= \int \frac{(9 - 9\sin^2\theta)3\cos \theta .3\cos \theta d\theta}{(3\sin \theta)^4}\)     Let \(x= 3\sin\theta, dx= 3\cos\theta d\theta\)

\(= \frac{81}{81}\int \frac{\cos^4\theta}{\sin^4\theta} d\theta\)

\(= \int \cot^4 \theta d\theta\)

\(= \int (cosec^2\theta - 1)\cot^2\theta d\theta\)

\(= \int \cot^2\theta \,cosec^2\theta d\theta - \int (cosec^2\theta - 1)d\theta\)

\(= - \frac{\cot^2\theta}3 + \cot \theta + \theta + C\)

\(= -\frac 13 \frac{(1 - \sin^2\theta)^{3/2}}{\sin^3 \theta} + \frac{(1 - \sin^2\theta)^{1/2}}{\sin\theta} + \sin^{-1} \left(\frac x3\right) + C\)

\(= -\frac 13 \frac{\left(1 - \left(\cfrac x3\right)^2\right)^{3/2}}{\left(\frac x3\right)^3} + \cfrac{\left(1 - \left(\frac x3\right)^2\right)^{1/2}}{\frac x3} + \sin^{-1} (\frac x3) + C\)

\(=-\frac 13 \frac{(9 - x^2 )^{3/2}}{x^3} + \frac{\sqrt{9 - x^2}}x + \sin^{-1} (\frac x3) + C\)

Related questions

0 votes
1 answer

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...