\((3x + 2)^2\frac{d^2y}{dx^2}+5(3x+2)\frac{dy}{dx}-3y=x^2+x+1\)
3x + 2 = t
\(\frac{dy}{dx}=\frac{dy}{dt}.\frac{dt}{dx}=3\frac{dy}{dt}\)
\(∴\frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{dy}{dx})=\frac{d}{dt}(\frac{3dy}{dt})\frac{dt}{dx}=9\frac{d^2y}{dt^2}\)
\(∴9t^2\frac{d^2y}{dt^2}+15+\frac{dy}{dt}-3y=\frac{1}{9}(t^2-4t+4)+\frac{t-2}{3}+1\)
\(⇒9t^2\frac{d^2y}{dt^2}+15t\frac{dy}{dt}-3y=\frac{1}{9}(t^2-t+7)\)
Let t = ez
\(t\frac{d}{df}=\frac{d}{dz}=D\)
\(t^2\frac{d^2}{df^2}=D(D-1)\)
∴ (9D (D-1) + 15 D - 3) y = 1/9 (t2 - t + 7)
⇒ (9D2 + 6D - 3)y = 1/9(t2 - t + 7)
It's auxilarly equation :
9m2 + 6m - 3 = 0
⇒ (m+1) (9m-3) = 0
⇒ (m+1) (3m-1) = 0
⇒ m = -1 , 1/3
∴ C.F = c1e-z + c2ez/3 = c1/t + c2t1/3
\(P.I=\frac{1}{9D^2+6D-3}\,\frac{1}{9}\,(t^2-t+7)\)
\(=\frac{1}{-27}(1-(9D^2+6D))^{-1}(t^2-t+7)\)
\(=\frac{-1}{27}(1+(9D^2+6D)+(9D^2+6D)^2+...)(t^2-t+7)\)
\(=\frac{-1}{27}(t^2-t+7+18+12t-6+72)\)
\(=\frac{-1}{27}(t^2+11t+91)\)
y = C.F + P.I
\(=\frac{C_1}{t}+C_2t^{\frac{1}{3}}-\frac{1}{27}(t^2+11t+91)\)
\(=\frac{C_1}{3x+2}+C_2(3x+2)^{1/3}-\frac{1}{27}((3x+2)^2+11(3x+2)+91)\)
\(=\frac{C_1}{3x+2}+C_2(3x+2)^{1/3}-\frac{1}{27}(9x^2+45x+117)\)
which is complete solution of given differential equation.