Correct option is (c) 72 cm

ABCD is a rectangle.
So, ΔABP & ΔDPC are right ones with PA & PD as hypotenuses .
PA = 2PD i.e
PA2 = (2PD)2 = 4PD2
Let PB = x, i.e PC = 90 − x.
So, applying Pythagoras theorem,
PA2 = x2 + 362
⇒ 4PD2 = x2 + 362 ........(i)
PD2 = (90 − x)2 + 362
⇒ 4PD2 = 4(90 − x)2 + 4 × 362 ......(ii)
Comparing (i) & (ii),
x2 + 362 = 4(90 − x)2 + 4 × 362
⇒ 37584 − 720x + 36288 = 0
⇒ (x − 168)(x − 72) = 0
⇒ x = (168, 72) cm.
We reject x = PB = 168 as PB is the part of BC = 90 cm.
∴ x = PB = 72cm.