\(f(x)= e^{-1/x^2} \sin \frac 1x\)
\(f(0^+) = R.H.D. = L.H.D. = f(0^-)\)
\(f(0^+) = \lim \limits_{h\to 0} \frac{f(h) - f(0)}{h}\)
⇒ \(\lim\limits_{h\to 0} \frac{e^{-1/h^2} \sin \frac 1h - 0}{h}\)
⇒ \(\lim\limits_{h\to 0} \frac{e^{-1/h^2} \sin \frac 1h }{\frac 1h.h.h}\)
⇒ 0
\(f(0^-) = \lim \limits_{h\to 0} \frac{f(-h) - f(0)}{-h}\)
⇒ \(\lim\limits_{h\to 0} \frac{e^{-1/h^2} \sin (-\frac 1h) - 0}{-h. -
\frac 1h.(-h)}\)
⇒ \(\lim\limits_{h\to 0} \frac{e^{-1/h^2}}{h^2} \frac{\sin(-\frac 1h)}{(- \frac 1h)}\)
⇒ 0
f(x) is diffrentiable at x.