(1) 192
Chord with point, T = S1

(α, β) lie on (L1) and also y2 = 4x
⇒ α − 4β + 4 = 0
β2 = 4α
β2 = 4(4β - 4)
β2 − 16β + 16 = 0

\((28 +16 \sqrt {3},8+4\sqrt {3})\) and \((28 - 16 \sqrt {3},8-4\sqrt {3})\)
\((8-\beta)(\alpha - 28)\)
⇒ \((-4 \sqrt {3})(16 \sqrt {3})\)
= -192