Correct answer: 3
\(\mathrm{\int\left(\frac{1}{x}+\frac{\ln x}{x}\right) d x+\int \frac{d y}{1+y^{2}}=0}\)
\(\ln \mathrm{x}+\frac{(\ln \mathrm{x})^{2}}{2}+\tan ^{-1} \mathrm{y}=\mathrm{C}\)
Put \(\mathrm{x}=\mathrm{y}=1\)
\(\therefore \mathrm{C}=\frac{\pi}{4}\)
\(\mathrm{\Rightarrow \ln x+\frac{(\ln x)^{2}}{2}+\tan ^{-1} y=\frac{\pi}{4}}\)
Put \(\mathrm{x}=\mathrm{e}\)
\(\Rightarrow \mathrm{y}=\tan \left(\frac{\pi}{4}-\frac{3}{2}\right)=\frac{1-\tan \frac{3}{2}}{1+\tan \frac{3}{2}}\)
\(\therefore \alpha=1, \beta=1\)
\(\Rightarrow \alpha+2 \beta=3\)