(1) exactly one point of local minima and no point of local maxima
\(f(x)=2 x+3(x)^{\frac{2}{3}}\)
\(f^{\prime}(x)=2+2 x^{\frac{-1}{3}}\)
\(=2\left(1+\frac{1}{x^{\frac{1}{3}}}\right)\)
\(=2\left(\frac{x^{\frac{1}{3}}+1}{x^{\frac{1}{3}}}\right)\)

So, maxima (M) at x = -1 & minima (m) at x = 0.