Correct answer: 49
\(\mathrm{x}^{2}-\sqrt{6} \mathrm{x}+6=0_{\rightarrow \beta}^{\rightarrow\alpha}\)
\(\mathrm x=\frac{\sqrt{6} \pm i \sqrt{6}}{2}=\frac{\sqrt{6}}{2}(1 \pm i)\)
\(\alpha=\sqrt{3}\left(\mathrm{e}^{\mathrm{i} \frac{\pi}{4}}\right), \beta=\sqrt{3}\left(\mathrm{e}^{-\mathrm{i} \frac{\pi}{4}}\right)\)
\(\therefore \frac{\alpha^{99}}{\beta}+\alpha^{98}=\alpha^{98}\left(\frac{\alpha}{\beta}+1\right)\)
\(=\frac{\alpha^{98}(\alpha+\beta)}{\beta}=3^{49}\left(\mathrm{e}^{\mathrm{i} 99 \frac{\pi}{4}}\right) \times \sqrt{2}\)
\(=3^{49}(-1+\mathrm{i})\)
\(=3^{\mathrm{n}}(\mathrm{a}+\mathrm{ib})\)
\(\therefore \mathrm{n}=49, \mathrm{a}=-1, \mathrm{~b}=1\)
\(\therefore \mathrm{n}+\mathrm{a}+\mathrm{b}=49-1+1=49\)