The minimum distance between the slits S1 and S2 is 0.20 mm
Path difference for minima at P
\(2\sqrt{D^2 + d^2} - 2D = \frac{\lambda}{2}\)
\(\sqrt{D^2 + d^2} - D = \frac{\lambda}{4}\)
\(\sqrt{D^2 + d^2} = \frac{\lambda}{4} + D\)
\(\Rightarrow D^2 + d^2 = D^2 + \frac{\lambda^2}{16} + \frac{D\lambda}{2}\)
\(\Rightarrow d^2 = \frac{D\lambda}{2} + \frac{\lambda^2}{16}\)
\(\Rightarrow d^2 = \frac{0.2 \times 400 \times 10^{-9}}{2} + \frac{4 \times 10^{-14}}{4}\)
\(\Rightarrow d^2 \approx 400 \times 10^{-10}\)
\(\therefore d = 20 \times 10^{-5}\)
\(\Rightarrow d = 0.20\, mm\)