Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
11.3k views
in Mathematics by (50.1k points)
closed by

The value of \(\lim\limits _{n \rightarrow \infty} \sum_{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)}\) is:

(1) \(\frac{(2 \sqrt{3}+3) \pi}{24}\)

(2) \(\frac{13 \pi}{8(4 \sqrt{3}+3)}\)

(3) \(\frac{13(2 \sqrt{3}-3) \pi}{8}\)

(4) \(\frac{\pi}{8(2 \sqrt{3}+3)}\)

1 Answer

+1 vote
by (50.3k points)
selected by
 
Best answer

Correct option is (2) \(\frac{13 \pi}{8(4 \sqrt{3}+3)}\) 

\(\lim\limits _{n \rightarrow \infty} \sum_{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)} \)

\(\Rightarrow \lim\limits _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{\left(1+\frac{k^2}{n^2}\right)\left(1+\frac{3 k^2}{n^2}\right)}\)

\(\Rightarrow \int_0^1 \frac{d x}{\left(1+x^2\right)\left(1+3 x^2\right)}=\frac{1}{2} \int_0^1 \frac{3\left(1+x^2\right)-\left(1+3 x^2\right)}{\left(1+x^2\right)\left(1+3 x^2\right)} d x\)

\(\Rightarrow \frac{1}{2}\left[\int_0^1 \frac{3 \mathrm{dx}}{1+3 \mathrm{x}^2}-\int_0^1 \frac{\mathrm{dx}}{1+\mathrm{x}^2}\right]=\frac{13 \pi}{8(4 \sqrt{3}+3)}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...