Correct option is (2) \(\frac{13 \pi}{8(4 \sqrt{3}+3)}\)
\(\lim\limits _{n \rightarrow \infty} \sum_{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)} \)
\(\Rightarrow \lim\limits _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{\left(1+\frac{k^2}{n^2}\right)\left(1+\frac{3 k^2}{n^2}\right)}\)
\(\Rightarrow \int_0^1 \frac{d x}{\left(1+x^2\right)\left(1+3 x^2\right)}=\frac{1}{2} \int_0^1 \frac{3\left(1+x^2\right)-\left(1+3 x^2\right)}{\left(1+x^2\right)\left(1+3 x^2\right)} d x\)
\(\Rightarrow \frac{1}{2}\left[\int_0^1 \frac{3 \mathrm{dx}}{1+3 \mathrm{x}^2}-\int_0^1 \frac{\mathrm{dx}}{1+\mathrm{x}^2}\right]=\frac{13 \pi}{8(4 \sqrt{3}+3)}\)