Correct answer: 3
\((\sqrt{2})^{x}=2^{x} \Rightarrow x=0 \Rightarrow \alpha=1\)
\(\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^{4}\left[\frac{\sqrt{\pi}-\pi \mathrm{i}-\mathrm{i}-\sqrt{\pi}}{\pi+1}+\frac{\sqrt{\pi}-\mathrm{i}-\pi \mathrm{i}-\sqrt{\pi}}{1+\pi}\right]\)
\(=-\frac{\pi \mathrm{i}}{2}\left(1+4 \mathrm{i}+6 \mathrm{i}^{2}+4 \mathrm{i}^{3}+1\right)\)
\(=2 \pi \mathrm{i}\)
\(\beta=\frac{2 \pi}{\frac{\pi}{2}}=4\)
Distance from \((1,4)\) to \(4 x-3 y=7\)
Will be \(\frac{15}{5}=3\)