Correct answer: 48
\(\vec{b} \cdot \vec{c}=(2 \vec{a} \times \vec{b}) \cdot \vec{b}-3|b|^{2}\)
\(|\mathrm{b}||\mathrm{c}| \cos \alpha=-3|\mathrm{~b}|^{2}\)
\(|c| \cos \alpha=-12,\text{ as } |b|=4\)
\(\vec{{a}} \cdot \vec{{b}}=2\)
\(\cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}\)
\(|c|^{2}=|(2 \vec{a} \times \vec{b})-3 \vec{b}|^{2}\)
\(=64 \times \frac{3}{4}+144=192\)
\(|c|^{2} \cos ^{2} \alpha=144\)
\(192 \cos ^{2} \alpha=144\)
\(192 \sin ^{2} \alpha=48\)