Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
5.7k views
in Mathematics by (50.1k points)
closed by

If \(\tan \mathrm{A}=\frac{1}{\sqrt{x\left(x^{2}+x+1\right)}}, \tan \mathrm B=\frac{\sqrt{x}}{\sqrt{x^{2}+x+1}}\) and \(\tan\mathrm C=\left(x^{-3}+x^{-2}+x^{-1}\right)^{\frac{1}{2}}, 0<\mathrm {A, B, C}<\frac{\pi}{2}\), then \(\mathrm{A}+\mathrm{B}\) is equal to :

(1) \(\mathrm{C}\)

(2) \(\pi-C\)

(3) \(2 \pi-C\)

(4) \(\frac{\pi}{2}-C\)

1 Answer

+2 votes
by (50.3k points)
selected by
 
Best answer

Correct option is (1) \(\mathrm{C}\)

Finding \(\tan (A+B)\) we get

\(\Rightarrow \tan (A+B)=\)

\(\frac{\tan A+\tan B}{1-\tan A \tan B}=\cfrac{\frac{1}{\sqrt{x\left(x^{2}+x+1\right)}}+\frac{\sqrt{x}}{\sqrt{x^{2}+x+1}}}{1-\frac{1}{x^{2}+x+1}}\)

\(\Rightarrow \tan (\mathrm{A}+\mathrm{B})=\frac{(1+x)\left(\sqrt{x^{2}+x+1}\right)}{\left(x^{2}+x\right)(\sqrt{x})}\)

\(\tan (A+B)=\frac{\sqrt{x^{2}+x+1}}{x \sqrt{x}}=\tan C\)

\(A+B=C\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...