Correct option is (1) \(\mathrm{C}\)
Finding \(\tan (A+B)\) we get
\(\Rightarrow \tan (A+B)=\)
\(\frac{\tan A+\tan B}{1-\tan A \tan B}=\cfrac{\frac{1}{\sqrt{x\left(x^{2}+x+1\right)}}+\frac{\sqrt{x}}{\sqrt{x^{2}+x+1}}}{1-\frac{1}{x^{2}+x+1}}\)
\(\Rightarrow \tan (\mathrm{A}+\mathrm{B})=\frac{(1+x)\left(\sqrt{x^{2}+x+1}\right)}{\left(x^{2}+x\right)(\sqrt{x})}\)
\(\tan (A+B)=\frac{\sqrt{x^{2}+x+1}}{x \sqrt{x}}=\tan C\)
\(A+B=C\)