\( Q \rightarrow \) \[ I=\int_{1}^{\sqrt{2}} \frac{x^{4}}{\left(x^{2}-1\right)^{2}+1} d x \] (A) \( \sqrt{2}-1-\sqrt{\sqrt{2}-1} \tan ^{-1}\left(\sqrt{\frac{\sqrt{2}-1}{2}}\right) \) (3) \( \sqrt{2}-1+\sqrt{\sqrt{2}-1} \tan ^{-1}\left(\sqrt{\frac{\sqrt{2}+1}{2}}\right) \) (1) \( \sqrt{2}+1-\sqrt{\sqrt{2}-1} \tan ^{-1}\left(\sqrt{\frac{\sqrt{2}+1}{2}}\right) \) (1) \( \sqrt{2}-1+\sqrt{\sqrt{2}-1} \tan ^{-1}\left(\sqrt{\frac{\sqrt{2}-1}{2}}\right. \)