Correct option is (2) \(F = \frac {q_1 q_2}{56 \sqrt {14} \pi \varepsilon _0} (2 \hat {i}-\hat {j}+ 3\hat {k})\)
Position vector, \(\vec {d}\)
\(\vec {d} = (2-0) \hat {i} - (1-0)\hat {j} + (3-0) \hat {k} = 2\hat {i}- \hat {j} + 3\hat {k}\)
\(d^3 = [2 \hat {i}-\hat {j} + 3\hat {k}. (2\hat {i})-\hat {j}+3\hat {k}]^{\frac {3}{2}}\)
\(d^3 = 14\sqrt{14}\)
Electrostatic force F
\(F =\frac {1\,q_1q_2}{4\pi \varepsilon _0 \,d^3}\vec {d} = \frac {q_1 q_2 (2 \hat {i}-\hat {j}+3\hat {k})}{4\pi \varepsilon _0\,14\sqrt {14}}\)
\(F = \frac {q_1 q_2}{56 \sqrt {14} \pi \varepsilon _0} (2 \hat {i}-\hat {j}+ 3\hat {k})\)