Correct answer: 70
Number in this range will be 3-digit number.
N = \(\overline{abc}\) = such that a + b + c = 14
Also, a ≥ 1, a, b, c ∈ {0, 1, 2,....9}
Case I
All 3-digit same
⇒ 3a = 14 not possible
Case II
Exactly 2 digit same:
⇒ 2a + c = 14
(a, c) ∈ {(3, 8), (4, 6), (5, 4), (6, 2), (7, 0)}
⇒ \(\left( \frac{3!}{2!}\right)\) ways
⇒ 5 × 3 – 1
= 15 – 1 = 14
Case III
All digits are distinct a + b + c = 14
without losing generality a > b > c

⇒ 8 × 3! + 2(3! – 2!) = 48 + 8 = 56
= 0 + 14 + 56 = 70