Correct option is (C) \(3 \sin \theta-4 \sin ^3 \theta\)
\(\sin 3 \theta= \sin (2 \theta + \theta)\)
\(= \sin 2 \theta \cos \theta + \cos 2 \theta + \sin \theta\)
\(= 2(\sin \theta \cos \theta) \cos \theta + (\cos^2 \theta - \sin^2 \theta) \sin \theta\)
\(= 2 \sin \theta \cos^2 \theta + \cos^2\theta \sin\theta - \sin ^3 \theta\)
\(= 2 \sin \theta (1 - \sin^2 \theta) + (1 - \sin^2\theta) \sin \theta - \sin^3 \theta\)
\(= 2\sin\theta - 2\sin^3\theta + \sin \theta - \sin^3 \theta - \sin^3 \theta\)
\(= 3 \sin \theta - 4\sin^3 \theta\)