Correct answer: 108

\(2 x-\left(t-\frac{1}{t}\right) y-6=0\)
\(l=\sqrt{36\left(t+\frac{1}{t}\right)^2+9\left(t^2-\frac{1}{t^2}\right)^2}\)
\(l=3\left(t+\frac{1}{t}\right) \sqrt{4+\left(t-\frac{1}{t}\right)^2} \)
\(l=3\left(\mathrm{f}+\frac{1}{t}\right)^2 ; d=\frac{6}{\sqrt{4+\left(t-\frac{1}{t}\right)^2}} \)
\(\Rightarrow l \times d^2=3\left(t+\frac{1}{t}\right)^2 \times \frac{36}{\left(t+\frac{1}{t}\right)^2}=108\)