Correct option is (4) \(\frac{125 \pi}{12}\)
\(\mathrm S_1 \to\) area inside circle with radius 5

\(\mathrm{S}_2 =\mathrm{I}_{\mathrm{m}}\left(\frac{(\mathrm{x}+1)+\mathrm{i}(\mathrm{y}-\sqrt{3})}{1-\sqrt{3} \mathrm{i}} \times \frac{1+\sqrt{3} \mathrm{i}}{1+\sqrt{3} \mathrm{i}}\right)\)
\(=\mathrm{I}_{\mathrm{m}}\left(\frac{[(\mathrm{x}+1)+\mathrm{i}(\mathrm{y}-\sqrt{3})](1+\sqrt{3} \mathrm{i})}{1+3}\right)\)
\(=\sqrt{3} \mathrm{x}+\sqrt{3}+\mathrm{y}-\sqrt{3} \geq 0\)
\(= \sqrt{3} \mathrm{x}+\mathrm{y} \geq 0\)
\( \mathrm{S}_3=\mathrm{x} \geq 0\)
Area of half circle - area of arc AB
\(=\frac{25 \pi}{2}-\frac{1}{2} \times 25 \times \frac{\pi}{6}\)
\(=\frac{25 \pi}{2}-\frac{25 \pi}{12} \)
\(=\frac{125 \pi}{12}\)