Correct answer is : 60

\(\mathrm{f}_{0}=400 \mathrm{~Hz}\ ; \mathrm\ {v}=\sqrt{\frac{\mathrm{T}}{\mu}}=\) constant
\(\frac{\lambda}{2}=\mathrm{L} \ ; \quad \mathrm{v}=\mathrm{f}_{0} \lambda\)
\(\frac{\mathrm{v}}{2 \mathrm{f}_{0}}=\mathrm{L} \Rightarrow \mathrm{v}=2 \mathrm{Lf}_{0}\)
\(\mathrm{L}^{\prime}=\frac{\mathrm{v}}{2 \mathrm{f}^{\prime}}=\frac{2 \mathrm{Lf}_{0}}{2 \mathrm{f}^{\prime}}\)
\(=\frac{\mathrm{Lf}_{0}}{\mathrm{f}^{\prime}}=\frac{90 \times 400}{600}=60\)