Correct option is : (4) \(2.0 \mathrm{~g} / \mathrm{cm}^{3}\)
Given \(9 \mathrm{MSD}=10 \mathrm{VSD}\)
mass \(=8.635 \mathrm{~g}\)
\(\mathrm{LC}=1 \ \mathrm{MSD}-1 \ \mathrm{VSD}\)
\(\mathrm{LC}=1 \ \mathrm{MSD}-\frac{9}{10} \mathrm{MSD}\)
\(\mathrm{LC}=\frac{1}{10} \mathrm{MSD}\)
\(\mathrm{LC}=0.01 \mathrm{~cm}\)
Reading of diameter \(=\mathrm{MSR}+\mathrm{LC} \times \mathrm{VSR}\)
\( \begin{aligned} & =2 \mathrm{~cm}+(0.01) \times(2) \end{aligned} \)
\( \begin{aligned} =2.02 \mathrm{~cm} \end{aligned} \)
Volume of sphere \(=\frac{4}{3} \pi\left(\frac{\mathrm{d}}{2}\right)^{3}=\frac{4}{3} \pi\left(\frac{2.02}{2}\right)^{3}\)
\( =4.32 \mathrm{~cm}^{3} \)
Density \(=\frac{\text { mass }}{\text { volume }}=\frac{8.635}{4.32}=1.998 \sim 2.00 \mathrm{~g}\)