Correct answer is : 274
\(\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}(\mathrm{q}=0) \)
\(\mathrm{nC}_{\mathrm{V}} \Delta \mathrm{T}=-\mathrm{P}_{\mathrm{cxt}}\left(\mathrm{V}_2-\mathrm{V}_1\right) \)
\(\mathrm{V}_2=2 \mathrm{~V}_1\)
\(\frac{\mathrm{nRT}_2}{\mathrm{P}_2}=\frac{2 \mathrm{nRT}_1}{\mathrm{P}_1}\)
\(\mathrm{P}_1=5, \mathrm{~T}_1=298\)
\(\mathrm{P}_2=\frac{5 \mathrm{~T}_2}{2 \times 298} \)
\(\mathrm{n} \frac{5}{2} \mathrm{R}\left(\mathrm{T}_2-\mathrm{T}_1\right)=-1\left(\frac{\mathrm{nRT}_2}{\mathrm{P}_1}-\frac{\mathrm{nRT}_1}{\mathrm{P}_1}\right)
\)
Put \(\mathrm{T}_1=298\)
and \(\mathrm{P}_2=\frac{5 \mathrm{~T}_2}{2 \times 298}\)
Solve and we get \(T_2\) = 274.16 K
\(T_2 \approx 274 K\)