Correct answer is : 11

\( \frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}\)
\( \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k} \)
\( A(t, 2 t+1,3 t+2)\)
\( \overrightarrow{Q A}=(t-1) i+(2 t-5) j+(3 t-2) \hat{k}\)
\( \overrightarrow{Q A} \cdot \vec{b}=0 \)
\( (t-1)+2(2 t-5)+3(3 t-2)=0 \)
\( 14 t=17\)
\(\alpha=\frac{20}{14} \)
\( \beta=\frac{12}{14}\)
\( \gamma=\frac{102}{14} \)
\(2 \alpha+\beta+\gamma=\frac{154}{14}=11 \text { Ans. }\)