Correct option is : (1) \(\frac{9 \pi^{2}}{8}\)
\(\lim \limits_{x \rightarrow \frac{\pi}{2}} \frac{0-\{\sin (2 x)+\cos (x)\} \cdot 3 x^{2}}{2\left(x-\frac{\pi}{2}\right)}\)
\(=\lim \limits_{x \rightarrow \frac{\pi}{2}} \frac{-\{2 \sin x \cos x+\cos x\} 3 x^{2}}{2\left(x-\frac{\pi}{2}\right)}\)
\(=\lim\limits _{x \rightarrow \frac{\pi}{2}}\left\{\frac{2 \sin x \sin \left(\frac{\pi}{2}-x\right)}{2\left(x-\frac{\pi}{2}\right)}+\frac{\sin \left(\frac{\pi}{2}-x\right)}{2\left(\frac{\pi}{2}-x\right)}\right\} 3 x^{2}\)
\(=\left(1(1)+\frac{1}{2}\right) 3\left(\frac{\pi}{2}\right)^{2}\)
\(=\frac{9 \pi^{2}}{8}\)