Correct answer is : 42
\( \sum_{x=0}^4 x P(x)=\frac{5}{2}\)
\( \sum_{x=0}^4 x^2 P(x)=? \)
\((0, P(0)),(1, P(1)),(2, P(2)),(3, P(3)),(4, P(4))\)
\(K=P(1)-P(0)=P(2)-P(1)=P(3)-P(2)=P(4)-P(3) \)
\(P(1)=K+P(0)\)
\(P(2)=2 K+P(0)\)
\(P(3)=3 K+P(0)\)
\(P(4)=4 K+P(0)\)
\(P(0)+P(1)+P(2)+P(3)+P(4)=1\)
\(\Rightarrow 5 P(0)+10 K=1\)
\(K+P(0)+4 K+2 P(0)+9 K+3 P(0)+16 K+4 P(0)=\frac{5}{2}\)
\(30 K+10 P(0)=\frac{5}{2} \)
\(\therefore 10 K=\frac{1}{2} \)
\(K=\frac{1}{20}, P(0)=\frac{1}{10}\)
\(P(1)=\frac{3}{20}, P(2)=\frac{4}{20}\)
\(P(3)=\frac{5}{20}, P(4)=\frac{6}{20}\)
\(\sum_{x=0}^4 x^2 P(x)=8\)
\(\therefore\) Variance = \(8- \frac {25}{4} = \frac {32 -25}{4} =\frac {7}{4}\)
\(\therefore\) \(24 \alpha = \frac {24 \times 7}{4} = 42\)