Correct option is (C) (P) → (4) (Q) → (2) (R) → (5) (S) → (3)

Slope of line = 2 ⇒ \(\tan \theta =2\)
\(c(0,\alpha )\,\alpha > 0\)
\(\alpha+r=5+\sqrt{5}\) ....(1)
Line \(y = 2x\) is tangent to the circle
\(\therefore\left|\frac{0-\alpha}{\sqrt{4+1}}\right|=r\)
\(\Rightarrow \alpha=r \sqrt{5} \quad \text { as } \alpha>0\)
From equation (1)
\(r \sqrt{5}+r=5+\sqrt{5}\)
\(\Rightarrow r(\sqrt{5}+1)=\sqrt{5}(\sqrt{5}+1) \)
\(\Rightarrow r=\sqrt{5}\)
And \(\alpha=r \sqrt{5}=\sqrt{5} \times \sqrt{5}=5\)
Centre \(C(0,5)\)
\(O C=5 \,\,;A_1 C=\sqrt{5}\)
\(\therefore O A_1=\sqrt{25-5}=\sqrt{20}=2 \sqrt{5} \)
\(\tan \theta=2 \,\, \text { (from figure) }\)
\(\cos \theta=\frac{1}{\sqrt{5}} \quad \sin \theta=\frac{2}{\sqrt{5}} \)
\(A_1\left(0+O A_1 \cos \theta, 0+O A_1 \sin \theta\right) \)
\(A_1\left(2 \sqrt{5} \times \frac{1}{\sqrt{5}}, 2 \sqrt{5} \times \frac{2}{\sqrt{5}}\right) \)
\(A_1(2,4)\)
Let \(B_1\left(x_1, y_1\right)\)
\(\therefore \frac{x_1+2}{2}=0\) and \(\frac{y_1+4}{2}=5\)
\(x_1=-2 , y_1=6 \)
\(B_1(-2,6)\)