Correct answer: 96
Case-1

\(\mathrm{P}-\mathrm{P}_0=\Delta \mathrm{P}=\frac{4 \mathrm{~T}}{\mathrm{R}}\)
\(\mathrm{P}=\left(\mathrm{P}_0+\frac{4 \mathrm{~T}}{\mathrm{R}}\right)\)
Case-2

\(\mathrm{P}_1-\frac{8 \mathrm{P}_0}{27}=\Delta \mathrm{P}_1=\frac{4 \mathrm{~T}}{\mathrm{R}_1}\)
\( \mathrm{P}_1=\frac{4 \mathrm{~T}}{\mathrm{R}_1}+\frac{8 \mathrm{P}_0}{27}\)
Constant temperature process
\(\mathrm{PV}=\mathrm{P}_1 \mathrm{~V}_1 \)
\(\left(\mathrm{P}_0+\frac{4 \mathrm{~T}}{\mathrm{R}}\right) \frac{4}{3} \pi \mathrm{R}^3=\left(\frac{4 \mathrm{~T}}{\mathrm{R}_1}+\frac{8 \mathrm{P}_0}{27}\right) \frac{4}{3} \pi \mathrm{R}_1^3 ;\)
\(\left(\frac{4 \mathrm{~T}}{\mathrm{R}}\right)\left(\frac{4 \mathrm{~T}}{\mathrm{R}_1}\right) \rightarrow \text { (Neglected) }\)
\(\mathrm{R}=\frac{2}{3} \mathrm{R}_1 \Rightarrow \mathrm{R}_1=\frac{3}{2} \mathrm{R} \)
\( \Delta \mathrm{P}_1=\frac{4 \mathrm{~T}}{\mathrm{R}_1}=\frac{4 \mathrm{~T}}{3 \mathrm{R}} \times 2=\frac{2}{3} \times(144)=96 \mathrm{~Pa}\)