\(\int_0^{\pi / 2} \log (\tan x) d x=0\)
L.H.S. \( I=\int_0^{\pi / 2} \log (\tan x) d x\) .....(i)
\( I=\int_0^{\pi / 2} \log \left(\tan \left(\frac{\pi}{2}-x\right)\right) d x \quad\left[\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta\right] \)
\(I=\int_0^{\pi / 2} \log (\cot x) d x\) ......(ii)
\(\text { (i) }+ \text { (ii) }\)
\(2 I=\int_0^{\pi / 2}[\log (\tan x)+\log (\cot x)] d x \quad 2 I=\int_0^{\pi / 2}(\log \tan x \cdot \cot x) d x \)
\(2 I=\int_0^{\pi / 2} \log \mid d x \quad 2 I=\log \int_0^{\pi / 2} d x\)
\(2 I=0 \quad I=0=\text { R.H.S. Hence Proved. }\)