\(\because\ \text{Horizontal}\ \text{range},\ R = \frac{u^2\sin\ 2\theta}{g}\ .......(1)\)
Time of flight for projection angle \(\theta\),
\(t_1 = \frac{2u \sin\theta}{g}\ ....(2)\)
and that for \((90^\circ - \theta),\)
\(t_2 = \frac{2u\sin(90^\circ - \theta)}{g} = \frac{2u\cos\theta}{g}\ .....(3)\)
On multiplying equation (2) and (3)
\(t_1t_2 = \frac{2u\sin\theta}{g}\times\frac{2u\cos\theta}{g}\)
or \(t_1t_2 = \frac{2u^2.\sin\ 2\theta}{g^2}\)
or \(t_1t_2 = \frac{2R}{g}\)
or \(R = \frac{g}{2}.t_1t_2\)
\(\therefore \ R \propto t_1t_2\)