Correct option is : (d) 4 ms-2
Given: S = t3 + 5; r = 20 m
Linear velocity of the particle,
\(v = \frac{ds}{dt} = \frac{d}{dt}[t^3 + 5] = 3t^2\)
Velocity at t = 2s, v = 3(t)2 = 3 x (2)2
= 3 x 4 = 12 ms-1
Linear acceleration a = \(\frac{dv}{dt} = \frac{d}{dt}(3t^2) = 6t\)
At t = 2s, aT = 6 x 2 = 12 ms-2
Radial acceleration
\(a_c = \frac{v^2}{r} = \frac{12\times12}{20} = 7.4\ ms^{-1}\)
∴ Resultant acceleration
\(a = \sqrt{a_c^{2} + a_T^{2}} = \sqrt{(7.4)^2 + (12)^2}\)
or a = 14 ms-2
Hence, option (d) is correct.