Correct option is : \((C)\ -\frac{1}{2}\ mgv_0t^2\cos\theta\ \hat {k}\)
Angular momentum,
\(\because\ \vec L = m(\vec r\times\vec v)\)
If (x, y, t) are the co-ordinates of point P, then
x = v0.cosθ x t
and y = v0 sinθ x t - \(\frac{1}{2}gt^2\)

∴ Position vector of P,
\(\vec r = x\hat{i} + y\hat{j} = [v_0\cos\theta.t\hat{i} + \{v_0\sin\theta\times t - \frac{1}{2}gt^2\}\hat{j}]\)
AT point P,
vx = v0 cosθ
and vy = v0 sinθ - gt
\(\therefore\ \vec v = v_x\hat{i} + v_g\hat{j}\)
\(= v_0\cos\theta.\hat{i} + (v_0\sin\theta - gt)\hat{j}\)
Therefore angular momentum,

Therefore, option (c) is correct.