\(\therefore\ t = \sqrt{x} + 3\ or\ \sqrt{x} = t-3\)
or x = (t - 3)2 = t2 - 6t + 9
∴ Velocity \( v = \frac{dx}{dt} = \frac{d}{dt}(t^2 - 6t + 9)\)
= 2t - 6
(i) When v = 0,
then 2t - 6 = 0 ⇒ t = 3
∴ Displacement when v = 0
x = t2 - 6t + 9 = (3)2 - 6 x 3 + 9
= 9 - 18 + 9 = 18 - 18 = 0
or x = 0 (zero)
(ii) ∵ x = t2 - 6t + 9
∴ At t = 0, x0 = 0 = 0 - 0 + 9 = 9
at t = 6s, x6 = (6)2 - 6 x 6 + 9 = 36 - 36 + 9
or x6 = 9 m
∴ Displacement ∆x = x6 - x0 = 9 - 9 = 0
Therefore work done
W = F.∆x = F x 0 = 0
or W = 0