Correct option is (A) \(x_2y_1\)
Method 1:
When the points \(\left({x}_{1}, {y}_{{1}}\right),\left({x}_{2}, {y}_{2}\right)\) and \(\left({x}_{1}+{x}_{2}, {y}_{1}+{y}_{2}\right)\) are collinear in the Cartesian plane then
\(\left|\begin{array}{cc}{x}_{1}-{x}_{2} & {y}_{1}-{y}_{2} \\
{x}_{1}-\left({x}_{1}+{x}_{2}\right) & {y}_{1}-\left({y}_{1}+{y}_{2}\right)\end{array}\right|={0} \)
\(\Rightarrow\left|\begin{array}{cc}{x}_{1}-{x}_{2} & {y}_{1}-{y}_{2}\\
-{x}_{2} & -{y}_{2}\end{array}\right|=\left(-{x}_{1} {y}_{2}+{x}_{2} {y}_{2}+{x}_{2} {y}_{1}-{x}_{2} {y}_{2}\right)={0}\)
\(\Rightarrow {x}_{2} {y}_{1}={x}_{1} {y}_{2}\)
Method 2:
When the points \(\left({x}_{1}, {y}_{1}\right),\left({x}_{2}, {y}_{2}\right)\) and \(\left({x}_{1}+{x}_{2}, {y}_{1}+{y}_{2}\right)\) are collinear in the Cartesian plane then
\(\left|\begin{array}{ccc}{x}_{1} & {y}_{1} & {1} \\
{x}_{2} & {y}_{2} & {1} \\
{x}_{1}+{x}_{2} & {y}_{1}+{y}_{2} & 1\end{array}\right|=0\)
\(\Rightarrow {1} \cdot\left({x}_{2} {y}_{1}+{x}_{2} {y}_{2}-{x}_{1} {y}_{2}-{x}_{2} {y}_{2}\right)-{1}\left({x}_{1} {y}_{1}+{x}_{1} {y}_{2}-{x}_{1} {y}_{1}-{x}_{2} {y}_{1}\right)+\left({x}_{1} {y}_{2}-{x}_{2} {y}_{1}\right)={0}\)
\(\Rightarrow {x}_{2} {y}_{1}={x}_{1} {y}_{2}\)