\(\sin (A-B) =\frac{1}{2} \)
\(\sin (A-B) =\sin 30^{\circ} \quad\left[\because \sin 30^{\circ}=\frac{1}{2}\right] \)
\(A-B =30^{\circ} \cdots (i)\)
\(\cos (A+B) =\frac{1}{2} \)
\(\cos (A+B) =\cos 60^{\circ} \quad\left[\because \cos 60^{\circ}=\frac{1}{2}\right] \)
\(A+B =60^{\circ} \cdots \text { (ii) }\)
\(\text {Adding (i) and (ii) we get, }\)
\(A-B\,+\,A+B =30+60^{\circ} \)
\(2 A =90^{\circ}\)
\(A=\frac{90^{\circ}}{2} =45^{\circ}\)
Putting the Value of A in eq (i).
\(A-B =30^{\circ} \)
\(45^{\circ}-B =30^{\circ} \)
\(B =45^{\circ}-30^{\circ}=15^{\circ}\)
Hence, \(A=45^{\circ}\) and \(B=15^{\circ}\).