Correct option is (A) \(0\)
We know, \(\int\limits_{0}^{2 a} {f}({x}) {d x}={0},\) if \({f}({2 a}-{x})=-{f}({x})\)
Let \({f}({x})=\operatorname{cosec}^{7} {x}\)
Now, \({f}(2 \pi-{x})=\operatorname{cosec}^{7}(2 \pi-{x})=-\operatorname{cosec}^{7} {x}=-{f}({x})\)
\(\therefore \int\limits_{0}^{2 \pi} \operatorname{cosec}^{7} {x} {d x}={0}\),
Using the property \(\int\limits_{0}^{2 a} {f}({x}) {d x}={0}\), if \({f}(2 {a}-{x})=-{f}({x})\)