Let

[Multiplying numerator and denominator by sin x]
= ∫\(\frac{sin\ x}{(1-cos^2x)(1+2cos\ x)}\) dx
Put cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ I = ∫\(\frac{-dt}{(1-t^2)(1+2t)}\)
= ∫\(\frac{-dt}{(1-t)(1+t)(1+2t)}\) ...... (i)
Now, using partial fraction,
Let \(\frac{1}{(1-t)(1+t)(1+2t)} = \frac{A}{1-t} + \frac{B}{1+t} + \frac{C}{1+2t}\) ...... (ii)
⇒ 1 = (1 + t) (1 + 2t)A + (1 - t) (1 + 2t)B + (1 - t) (1 + t)C ......... (iii)
On putting t = - 1 in Eq.(iii), we get
1 + (2) (- 1) B ⇒ B = \(-\frac{1}{2}\)
On putting t = 1 in Eq. (lu), we get
1 = 2. (3) A ⇒ A = \(-\frac{1}{6}\)
On putting t = \(-\frac{1}{2}\) in Eq. (iii), we get
