Let E1 = Event of withdrawing first white ball
E2 = Event of withdrawing first black ball
E3 = Event of withdrawing second black ball.
Black and white balls are B1, B2, W1 and W2 respectively, then
E1 = {(W1, W2), (W1, B1), (W1, B2), (W2, B1), (W2, B2)}
∴ n(E1) = 5
E2 = {(B1, B2), (B1, W1), (B2, W2), (B2, W1), (B2, W2)}
∴ n(E2) = 5
E3 = (W1, B1), (W1, B2), (W2, B1), (W2, B2)
∴ n(E3) = 4
Again E2 ∩ E3 = {(W1, B1), (W1, B2) (W2, B1), (W2, B2)
∴ n(E1 ∩ E2)=4
Again E2 ∩ E3 = {(B1, B2)}
∴ n(E1 ∩ E3) = 1
(i) Probability of drawing second black ball, when first ball is white,

(ii) Probability of drawing second black ball, when first ball is black,
