
Draw diameter AD passing through center O and connect DB
In ΔABD, ∠D = 60° (Angle subtended by the same chord AB)
∠DBA = 90° (Angle subtended by the diameter on the circumference)
In ΔABD
\(\sin 60^\circ = \frac{AB}{AD}\)
\(AD = d = \frac{AB}{\sin 60^\circ} = \frac{6}{0.87} = 6.9\ cm \quad ....(1)\)
Now, in triangle ABC, using sine rule
\(\frac{BC}{\sin 50^\circ} =\frac{AB}{\sin60^\circ}\)
\(\Rightarrow \frac{BC}{\sin 50^\circ} = d = 6.9 \ cm \quad \text{from (1)}\)
\(BC = 6.9 \times \sin 50^\circ = 6.9 \times 0.77 = 5.313 \ cm\)
Similarly
\(\frac{AC}{\sin 70^\circ} = \frac{AB}{\sin 60^\circ}\)
\(\frac{AC}{\sin 70^\circ} = d = 6.9\ cm \quad \text{from (1)}\)
\(AC = d \sin 70^\circ\)
\(AC = 6.9 \times 0.94 = 6.486 \ cm\)
a) Diameter of its circum circle = 6.9 cm
b) Lengths of AC and BC = 5.313 cm and 6.486 cm