Correct option is (C) \(\frac {-2}{7}, \frac {-3}7, \frac {6}7\)
\(\vec r. (2\hat i + 3\hat j - 6\hat k) + 1 = 0\)
\(\vec r. (2\hat i + 3\hat j - 6\hat k) = -1\)
\(-2\hat i - 3\hat j + 6\hat k = 1\)
\(\Rightarrow\frac {-2\hat i - 3\hat j + 6\hat k }{\sqrt{2^2 + 3^2 + 6^2}} =\frac {-2\hat i - 3\hat j + 6\hat k }{\sqrt{4 + 9 +36}}\)
\( =\frac {-2\hat i - 3\hat j + 6\hat k }{\sqrt{49}}\)
\( =\frac {-2\hat i - 3\hat j + 6\hat k }{7}\)
\(= \frac {-2\hat i}7-\frac {3\hat j}7 + \frac {6\hat k}7\)
Hence, direction cosines are \(\frac {-2}{7}, \frac {-3}7, \frac {6}7\).