Correct option is (4) \(\frac{32}{45}\)
\(T_r=\frac{(2 r-1)(2 r+1)(2 r+3)(2 r+5)}{64}\)
\(\Rightarrow \frac{1}{T_r}=\frac{64}{16\left(r-\frac{1}{2}\right)\left(r+\frac{1}{2}\right)\left(r+\frac{3}{2}\right)\left(r+\frac{5}{2}\right)}\)
\(\Rightarrow \frac{1}{T_r}=\frac{\frac{4}{3}\left[\left(r+\frac{5}{2}\right)-\left(r-\frac{1}{2}\right)\right]}{\left(r-\frac{1}{2}\right)\left(r+\frac{1}{2}\right)\left(r+\frac{3}{2}\right)\left(r+\frac{5}{2}\right)}\)
\(\Rightarrow \frac{1}{T_r}=\frac{4}{3}\left[\frac{1}{\left(r-\frac{1}{2}\right)\left(r+\frac{1}{2}\right)\left(r-\frac{3}{2}\right)}-\right. \left.\frac{1}{\left(r+\frac{1}{2}\right)\left(r+\frac{3}{2}\right)\left(r+\frac{5}{2}\right)}\right]\)
\(\lim _{n \rightarrow \infty} \sum_{r=1}^n \frac{1}{T_r}=\frac{4}{3}\left[\frac{1}{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}}-\frac{1}{\frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2}}\right] \frac{1}{\frac{3}{2} \cdot \frac{5}{2}-\frac{7}{2}}-\frac{1}{\frac{5}{2} \cdot \frac{7}{2} \cdot \frac{9}{2}}\)
\(=\frac{4}{3}\left[\frac{8}{15}\right]=\frac{32}{45}\)