If the curve satisfying the differential equation \(\frac{d y}{d x}=\frac{6-2 e^{2 x} y}{1+e^{2 x}}\) passes through (0, 0) and \((\ln 2, k),\) then k is
(1) \(\frac{3}{5} \ln 3\)
(2) \(\frac{6}{5} \ln 2\)
(3) \(\frac{8}{9} \ln 3\)
(4) \(\frac{7}{2} \ln 2\)