Correct option is (2) \(2 \sqrt{3}-1\)
\(\sum_{r=1}^{13} \frac{1}{\sin \left[\frac{\pi}{4}+(r-1) \frac{\pi}{6}\right] \cdot \sin \left[\frac{\pi}{4}+r \cdot \frac{\pi}{6}\right]}\)
\(\sin (A-B)=\sin A \cos B-\cos A \sin B\)
\(=2 \cdot \sum_{r=1}^{13} \cot \left(\frac{\pi}{4}+(r-1) \frac{\pi}{6}\right)-\cot \left(\frac{\pi}{4}+r \cdot \frac{\pi}{6}\right) \)
\( =2 \cdot \cot \left(\frac{\pi}{4}+0 \cdot \frac{\pi}{6}\right)-\cot \left(\frac{\pi}{4}+\frac{13 \pi}{6}\right) \)
\(=2 \cdot\left\{\cot \frac{\pi}{4}-\cot \left(\frac{\pi}{4}+\frac{\pi}{6}\right)\right\} \)
\(=2[1-2+\sqrt{3}] \)
\(=2[\sqrt{3}-1]\)