Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
842 views
in Mathematics by (54.3k points)
edited by

The value of the limit

\(\lim _{x \rightarrow 0}(\operatorname{cosec} x)\left(\sqrt{2 \cos ^2 x+3 \cos x}-\sqrt{\cos ^2 x+\sin x+4}\right)\) is

(1) 0

(2) 1

(3) \(\frac{1}{2 \sqrt{5}}\)

(4) \(-\frac{1}{2 \sqrt{5}}\)
 

Please log in or register to answer this question.

1 Answer

+1 vote
by (50.3k points)

Correct option is (4) \(-\frac{1}{2 \sqrt{5}}\)   

After rationalization,

\(\lim _{x \rightarrow 0} \frac{1}{\sin x}\left(\frac{\left(2 \cos ^2 x+3 \cos x\right)-\left(\cos ^2 x+\sin x+4\right)}{\sqrt{2 \cos ^2 x+3 \cos x}+\sqrt{\cos ^2 x+\sin x+4}}\right)\)  

\(\lim _{x \rightarrow 0} \frac{\cos ^2 x+3 \cos x-\sin x-4}{(\sin x)(\sqrt{5}+\sqrt{5})}\)   

\(=\lim _{x \rightarrow 0} \frac{1}{2 \sqrt{5}} \frac{\cos ^2 x+3 \cos x-\sin x-4}{\sin x}\)  

L'Hopital,  

\(\Rightarrow \lim _{x \rightarrow 0}\left(\frac{1}{2 \sqrt{5}}\right)\left(\frac{2 \cos x(-\sin x)-3 \sin x-\cos x}{\cos x}\right) \)  

\(=\frac{1}{2 \sqrt{5}}\left[\frac{-1}{1}\right]=-\frac{1}{2 \sqrt{5}}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...