Correct option is (4) \(-\frac{1}{2 \sqrt{5}}\)
After rationalization,
\(\lim _{x \rightarrow 0} \frac{1}{\sin x}\left(\frac{\left(2 \cos ^2 x+3 \cos x\right)-\left(\cos ^2 x+\sin x+4\right)}{\sqrt{2 \cos ^2 x+3 \cos x}+\sqrt{\cos ^2 x+\sin x+4}}\right)\)
\(\lim _{x \rightarrow 0} \frac{\cos ^2 x+3 \cos x-\sin x-4}{(\sin x)(\sqrt{5}+\sqrt{5})}\)
\(=\lim _{x \rightarrow 0} \frac{1}{2 \sqrt{5}} \frac{\cos ^2 x+3 \cos x-\sin x-4}{\sin x}\)
L'Hopital,
\(\Rightarrow \lim _{x \rightarrow 0}\left(\frac{1}{2 \sqrt{5}}\right)\left(\frac{2 \cos x(-\sin x)-3 \sin x-\cos x}{\cos x}\right) \)
\(=\frac{1}{2 \sqrt{5}}\left[\frac{-1}{1}\right]=-\frac{1}{2 \sqrt{5}}\)