Correct option is: (3) \(\frac{20}{9}cm\)
\(9^{\text {th }} \text{harmonic of closed pipe} =\frac{9 \mathrm{~V}_{1}}{4 \ell_{1}}\)
\(
4^{\text {th }} \text{ harmonic of open pipe} =\frac{2 \mathrm{~V}_{2}}{\ell_{2}}\)
\(
\therefore \frac{9 \mathrm{~V}_{1}}{4 \ell_{1}}=\frac{2 \mathrm{~V}_{2}}{\ell_{2}}\)
\(
\therefore \frac{9}{4 \ell_{1}} \sqrt{\frac{\mathrm{~B}}{\rho_{1}}}=\frac{2}{\ell_{2}} \sqrt{\frac{\mathrm{~B}}{\rho_{2}}} \Rightarrow \frac{\ell_{2}}{\ell_{1}}=\frac{8}{9} \sqrt{\frac{\rho_{1}}{\rho_{2}}}\)
\(
\ell_{2}=\ell_{1} \times \frac{8}{9} \times \frac{1}{4}=\frac{20}{9} \mathrm{~cm}\)