Correct option is (3) 16
For \(\infty\) many solution
\( \Delta=\Delta_1=\Delta_2=\Delta_3=0 \)
\(\Delta=0 \)
\(\begin{aligned} & \left|\begin{array}{ccc} 1 & 1 & 2 \\ 2 & 3 & \mathrm{a} \\ -1 & -3 & \mathrm{~b} \end{array}\right|=0 \end{aligned}\)
\((3 b+3 a)-1(2 b+a)+2(-6+3)=0 \)
\(2 a+b=6 \) ....(1)
\(\Delta_3=0\)
\(\left|\begin{array}{ccc} 1 & 1 & 6 \\ 2 & 3 & a+1 \\ -1 & -3 & 2 b \end{array}\right|=0\)
(6b + 3a + 3) - 1(4b + a + 1) + 6(-6 + 3) = 0
\(2 a+2 b=16 \ldots(2)\)
Solve(1) and (2)
a + b = 8
2a + b = 6
\(\begin{aligned} & -\quad-\quad- \\ & \hline-a=2 \\ \end{aligned}\)
a = -2, b = 10
7a + 3b
-14 + 30 = 16