Correct option is (3) \(\frac{9}{4}\)
\(12 \mathrm{x}^{2}-7 \mathrm{x}+1=0\)
\(\mathrm{x}=\frac{1}{3}, \frac{1}{4}\)
Let \(\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{1}{3} \ \&\ \mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)=\frac{1}{4}\)
\(\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{1}{3}\ \&\ \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}=\frac{1}{4}\)
\(\Rightarrow \mathrm{P}(\mathrm{B})=0.3\)
\(\&\ \mathrm{P}(\mathrm{A})=0.4\)
\(\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})\)
= 0.3 + 0.4 - 0.1 = 0.6
Now \(\frac{\mathrm{P}(\overline{\mathrm{A}} \cup \overline{\mathrm{B}})}{\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})}=\frac{\mathrm{P}(\overline{\mathrm{A} \cap \mathrm{B}})}{\mathrm{P}(\overline{\mathrm{A} \cup \mathrm{B}})}\)
\(=\frac{1-P(A \cap B)}{1-P(A \cup B)}=\frac{1-0.1}{1-0.6}=\frac{9}{4}\)