Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
3.1k views
in Mathematics by (46.2k points)
closed by

Let y = f(x) be the solution of the differential equation \(\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{6}+4 x}{\sqrt{1-x^{2}}},-1<x<1\) such that f(0) = 0. If \(6 \int_{-1 / 2}^{1 / 2} f(x) d x=2 \pi-\alpha\ \text{ then}\ \alpha^{2}\) is equal to _______.

1 Answer

+1 vote
by (45.7k points)
selected by
 
Best answer

Answer is: 27  

\(I.F. \mathrm{e}^{-\frac{1}{2} \int \frac{2 \mathrm{x}}{1-x^{2}} \mathrm{dx}}=\mathrm{e}^{-\frac{1}{2} \ell n \left(1-\mathrm{x}^{2}\right)}=\sqrt{1-\mathrm{x}^{2}}\)

\(y \times \sqrt{1-x^{2}}=\int\left(x^{6}+4 x\right) d x=\frac{x^{7}}{7}+2 x^{2}+c\)

Given \(\mathrm{y}(0)=0 \Rightarrow \mathrm{c}=0\)

\(y=\frac{\frac{x^{7}}{7}+2 x^{2}}{\sqrt{1-x^{2}}}\)

Now, \(6 \int^{\frac{1}{2}}_{-\frac{1}{2}} \frac{\frac{x^7}{7}+2x^2}{\sqrt{1-x^2}}dx=6 \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{2 x^{2}}{\sqrt{1-x^{2}}} d x\)

\(=24 \int_{0}^{\frac{1}{2}} \frac{\mathrm{x}^{2}}{\sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}\)

Put \(\mathrm{x}=\sin \theta\)

\(\mathrm{dx}=\cos \theta \mathrm{d} \theta\)

\(=24 \int_{0}^{\frac{\pi}{6}} \frac{\sin ^{2} \theta}{\cos \theta} \cos \theta \mathrm{~d} \theta\)

\(=24 \int_{0}^{\frac{\pi}{6}}\left(\frac{1-\cos 2 \theta}{2}\right) \mathrm{d} \theta=12\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{6}}\)

\(=12\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right)\)

\(=2 \pi-3 \sqrt{3}\)

\(\alpha^{2}=(3 \sqrt{3})^{2}=27\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...