Correct option is (3) 1
Let \(\ln \mathrm{x}=\mathrm{t} \Rightarrow \frac{\mathrm{dx}}{\mathrm{x}}=\mathrm{dt}\)
\(I=\int_{2}^{4} \frac{e^{\frac{1}{1+t^{2}}}}{e^{\frac{1}{1+t^{2}}}+e^{\frac{1}{1+(6-t)^{2}}}} d t\)
\(I=\int_{2}^{4} \frac{e^{\frac{1}{1+(6-t)^{2}}}}{\frac{1}{e^{1+(6-t)^{2}}}+e^{\frac{1}{1+t^{2}}}} d t\)
\(2 \mathrm{I}=\int_{2}^{4} \mathrm{dt}=(\mathrm{t})_{2}^{4}=4-2=2\)
\(\mathrm{I}=1\)