Correct option is (4) 441
\(2 z^{2}-32-2 i=0\)
\( 2\left(z-\frac{i}{z}\right)=3 \)
\(\alpha-\frac{i}{\alpha}=\frac{3}{2} \)
\(\Rightarrow \alpha^{2}-\frac{1}{\alpha^{2}}-2 i=\frac{9}{4} \)
\(\Rightarrow \alpha^{2}-\frac{1}{\alpha^{2}}-2 i=\frac{9}{4} \)
\(\Rightarrow \frac{9}{4}+2 i=\alpha^{2}-\frac{1}{\alpha^{2}} \)
\(\Rightarrow \frac{81}{16}-4+9 i=\alpha^{4}+\frac{1}{\alpha^{4}}-2 \)
\(\Rightarrow \frac{49}{16}+9 i=\alpha^{4}+\frac{1}{\alpha^{4}}\)
Similarly
\(\Rightarrow \frac{49}{16}+9 i=\beta^{4}+\frac{1}{\beta^{4}}\)
\(\Rightarrow \frac{\alpha^{19}+\beta^{19}+\alpha^{11}+\beta^{11}}{\alpha^{15}+\beta^{15}}=\frac{\alpha^{15}\left(\alpha^{4}+\frac{1}{\alpha^{4}}\right)+\beta^{15}\left(\beta^{4}+\frac{1}{\beta^{4}}\right)}{\alpha^{15}+\beta^{15}} \)
\(=\frac{\left(\alpha^{15}+\beta^{15}\right)\left(\frac{49}{16}+9 i\right)}{\left(\alpha^{15}+\beta^{15}\right)}\)
Real = \(\frac{49}{16}\)
\(\operatorname{Im}=9\)