Correct option is (1) \(\frac{75}{4}\)

\(\mathrm{A}\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right) \&\ \mathrm{C}\left(\frac{\mathrm{a}}{\mathrm{t}_{1}^{2}},-\frac{2 \mathrm{a}}{\mathrm{t}_{1}}\right)\)
Length \(\mathrm{AC}=\mathrm{a}\left(\mathrm{t}_{1}+\frac{1}{\mathrm{t}_{1}}\right)^{2}=\frac{25}{4}, \mathrm{t}_{1}+\frac{1}{\mathrm{t}_{1}}= \pm \frac{5}{2}\)
\(\Rightarrow \mathrm{t}_{1}=2\) or \(\frac{1}{2}, \mathrm{~A}\left(\frac{1}{2}, 1\right), \mathrm{D}\left(\frac{1}{4},-1\right), \mathrm{B}(4,4), \mathrm{C}(4,-4)\)
So, area of trapezium \(=\frac{1}{2}(8+2)\left(4-\frac{1}{4}\right)=\frac{75}{4}\)